Skip to main content

Tempus Drills More Visible Gold at No9 Vein - Elizabeth Project

PERTH, AUSTRALIA / ACCESSWIRE / September 26, 2022 / Tempus Resources Ltd ("Tempus" or "the Company") (ASXTMR)(TSX.V:TMRR)(OTCQB:TMRFF) is pleased to announce that it has intersected quartz veining containing visible gold in drill hole EZ-22-28, targeting the No. 9 Vein at the Elizabeth Gold Project in Southern British Columbia, Canada.

HIGHLIGHTS

  • Drilling has identified Visible Gold (‘VG') in several locations in quartz veining over a length of approximately 2 metres in drill-hole EZ-22-28
  • Tempus has completed 9 holes targeting the No. 9 Vein with VG identified in three holes (EZ-22-19, EZ-22-20, EZ-22-28), assays are pending

Tempus Resources, President and CEO, Jason Bahnsen, commented "We now have 9 drill-holes into the No. 9 Vein located 120 metres north west of the Blue Vein. This is the third drill hole reporting visible gold in the core. We are encouraged by the wide zones of mineralisation we are seeing in the previously unexplored No. Vein. Assays are pending for all 9 holes."

The No. 9 Vein is a previously mapped vein approximately 120 metres north west of Blue Vein. Some limited exploration had been performed on No. 9 Vein in the 1940s and 1950s.

Photo 1: No. 9 EZ-22- 28 Drill Core Showing Visible Gold from 117.50m - 118.15m

Tempus Resources Ltd, Monday, September 26, 2022, Press release picture

DDH EZ-22-28

EZ-22-28 intersected the No. 9 Vein approximately 100m to the north of the previously announced No. 9 Vein drill holes EZ-22-19 and EZ-22-20 that contained wide zones of quartz with visible gold. See Figure 1 and Tempus announcement of 15 August 2022 for full details.

EZ-22-28 intersected quartz veining of approximately 2 metres from 117.50 metres depth that contained multiple specks of visible gold, see Photo 1. Nine drill-holes have been completed targeting the No. 9 Vein. Visible gold has been reported in 3 of the nine drill holes completed to date. Assays are pending on all holes.

With reference to the AIG 2015 guidance for visual reporting of massive sulphide mineralisation, the Company reports it has not encountered any massive sulphide mineralisation in drill hole EZ-22-28. While it is not possible to accurately estimate the percentage of visual gold present though out the drill core, the Company suggests that the percentage would be less than 0.01%. The Company cautions that visual observations of visible gold are not a proxy or substitute for laboratory analysis. Laboratory assays and analysis will be required to confirm the visual interpretations presented in this news release.

Figure 1 - Elizabeth Plan View Showing 2022 Drill Locations

Tempus Resources Ltd, Monday, September 26, 2022, Press release picture

This announcement has been authorised by the Board of Directors of Tempus Resources Limited.

Competent Persons Statement

Information in this report relating to Exploration Results is based on information reviewed by Mr. Sonny Bernales, who is a Member of the Engineers and Geoscientists British Columbia (EGBC), which is a recognised Professional Organisation (RPO), and an employee of Tempus Resources. Mr. Bernales has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves, and as a Qualified Person for the purposes of NI43-101. Mr. Bernales consents to the inclusion of the data in the form and context in which it appears.

For further information:

TEMPUS RESOURCES LTD
Melanie Ross - Director/Company Secretary Phone: +61 8 6188 8181

About Tempus Resources Ltd

Tempus Resources Ltd ("Tempus") is a growth orientated gold exploration company listed on ASX ("TMR") and TSX.V ("TMRR") and OTCQB ("TMRFF") stock exchanges. Tempus is actively exploring projects located in Canada and Ecuador. The flagship project for Tempus is the Blackdome-Elizabeth Project, a high grade gold past producing project located in Southern British Columbia. Tempus is currently midway through a drill program at Blackdome-Elizabeth that will form the basis of an updated NI43-101/JORC resource estimate. The second key group of projects for Tempus are the Rio Zarza and Valle del Tigre projects located in south east Ecuador. The Rio Zarza project is located adjacent to Lundin Gold's Fruta del Norte project. The Valle del Tigre project is currently subject to a sampling program to develop anomalies identified through geophysical work.

Forward-Looking Information and Statements

This press release contains certain "forward-looking information" within the meaning of applicable Canadian securities legislation. Such forward-looking information and forward-looking statements are not representative of historical facts or information or current condition, but instead represent only the Company's beliefs regarding future events, plans or objectives, many of which, by their nature, are inherently uncertain and outside of Tempus's control. Generally, such forward-looking information or forward-looking statements can be identified by the use of forward-looking terminology such as "plans", "expects" or "does not expect", "is expected", "budget", "scheduled", "estimates", "forecasts", "intends", "anticipates" or "does not anticipate", or "believes", or variations of such words and phrases or may contain statements that certain actions, events or results "may", "could", "would", "might" or "will be taken", "will continue", "will occur" or "will be achieved". The forward-looking information and forward-looking statements contained herein may include, but are not limited to, the ability of Tempus to successfully achieve business objectives, and expectations for other economic, business, and/or competitive factors. Forward-looking statements and information are subject to various known and unknown risks and uncertainties, many of which are beyond the ability of Tempus to control or predict, that may cause Tempus' actual results, performance or achievements to be materially different from those expressed or implied thereby, and are developed based on assumptions about such risks, uncertainties and other factors set out herein and the other risks and uncertainties disclosed under the heading "Risk and Uncertainties" in the Company's Management's Discussion & Analysis for the quarter and nine months ended March 31, 2022 dated May 16, 2022 filed on SEDAR. Should one or more of these risks, uncertainties or other factors materialize, or should assumptions underlying the forward-looking information or statements prove incorrect, actual results may vary materially from those described herein as intended, planned, anticipated, believed, estimated or expected. Although Tempus believes that the assumptions and factors used in preparing, and the expectations contained in, the forward-looking information and statements are reasonable, undue reliance should not be placed on such information and statements, and no assurance or guarantee can be given that such forward-looking information and statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information and statements.

The forward-looking information and forward-looking statements contained in this press release are made as of the date of this press release, and Tempus does not undertake to update any forward-looking information and/or forward-looking statements that are contained or referenced herein, except in accordance with applicable securities laws. All subsequent written and oral forward-looking information and statements attributable to Tempus or persons acting on its behalf are expressly qualified in its entirety by this notice.

Neither the ASX Exchange, the TSX Venture Exchange nor its Regulation Service Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

Appendix 1

Table 1:Drill Hole Collar Table

UTM

UTM

Hole ID

Target

Easting (NAD83

Northing (NAD83

Elevation (m)

Length (m)

Azimuth

Dip

Z10)

Z10)

EZ-21-01

SW Vein

531203

5653771

2400

105

121

-52

EZ-21-02

SW Vein

531203

5653771

2400

132

146

-55

EZ-21-03

SW Vein

531203

5653771

2400

111

158

-47

EZ-21-04

SW Vein

531203

5653771

2400

135

168

-58

EZ-21-05

SW Vein

531078

5653776

2400

561

123

-48

EZ-21-06

SW Vein

531078

5653776

2400

255

110

-55

EZ-21-07

SW Vein

531203

5653771

2400

126

115

-75

EZ-21-07b

SW Vein

531203

5653771

2400

186

115

-75

EZ-21-08

SW Vein

531195

5653839

2427

231

115

-68

EZ-21-09

SW Vein

531200

5654020

2330

360

120

-48

EZ-21-10

SW Vein

530953

5653772

2390

354

127

-50

EZ-21-11

SW Vein

530953

5653772

2390

381

136

-50

EZ-21-12

SW Vein

530953

5653772

2390

375

125

-45

EZ-21-13

SW Vein

530919

5653596

2300

261

94

-45

EZ-21-14

SW Vein

530919

5653596

2300

261

108

-55

EZ-21-15

SW Vein

530919

5653596

2300

330

100

-55

EZ-21-16

SW Vein

530919

5653596

2300

330

83

-48.5

EZ-21-17

SW Vein

530919

5653596

2300

414

98

-63

EZ-21-18

SW Vein

530919

5653596

2300

351

128.5

-63

EZ-21-19

SW Vein

530953

5653772

2390

417

129

-58

EZ-21-20

SW Vein

530849

5653432

2260

300

129

-45

EZ-21-21

East Veins

531695

5653463

2120

357

90

-45

EZ-21-22

SW Vein

531195

5653839

2427

188

75

-45

EZ-21-23

SW Vein

531695

5653463

2120

165

91

-45

EZ-21-24

Blue Vein

530953

5653772

2390

219

84

-54

EZ-21-25

Blue Vein

530953

5653772

2390

201

105

-58

EZ-21-26

Blue Vein

530953

5653772

2390

198

95

-45

EZ-21-27

Blue Vein

530953

5653772

2390

195

150

-60

EZ-21-28

No.9 Vein

530953

5653772

2390

321

300

-55

Table 1: Drill Hole Collar Table

UTM

UTM

Hole ID

Target

Easting (NAD83

Northing (NAD83

Elevation (m)

Length (m)

Azimuth (o)

Dip

(o)

Z10)

Z10)

EZ-22-01

Blue Vein

530953

5653772

2400

222

130

-65

EZ-22-02

Blue Vein

531203

5653772

2400

225

108

-65

EZ-22-03

Blue Vein

531203

5653772

2400

198

95

-50

EZ-22-04

Blue Vein

531200

5653774

2393

375

290

-55

EZ-22-05

Blue Vein

531130

5653775

2399

156

280

-45

EZ-22-06

Blue Vein

531130

5653775

2399

237

290

-55

EZ-22-07

Blue Vein

531130

5653775

2399

216

298

-45

EZ-22-08

Blue Vein

531039

5653887

2422

201

135

-50

EZ-22-09

Blue and SW Vein

530953.1

5653772

2392

468

100

-53

EZ-22-10

Blue Vein

530953.1

5653772

2392

210

95

-65

EZ-22-11

Blue Vein

531039

5653887

2422

207

110

-60

EZ-22-12

Blue Vein

531039

5653887

2422

216

85

-50

EZ-22-13

Blue Vein

531039

5653887

2422

251

123

-65

EZ-22-14

Blue Vein

531004

5653896

2428

249

140

-65

EZ-22-15

Blue Vein

531004

5653896

2428

156

130

-65

EZ-22-16

Blue Vein

531004

5653896

2428

242

120

-65

EZ-22-17

Blue Vein

531004

5653896

2428

251

160

-65

EZ-22-18

Blue Vein

531004

5653896

2428

258

150

-65

EZ-22-19

No.9 Vein

531041

5653893

2422

201

284

-63

EZ-22-20

No.9 Vein

531041

5653893

2422

270

284

-67

EZ-22-21

No.9 Vein

531041

5653893

2422

216

294

-63

EZ-22-22

No.9 Vein

531041

5653893

2422

183

274

-63

EZ-22-23

No.9 Vein

531041

5653893

2422

201

264

-63

EZ-22-24

Main & West Vein

531347

5653777

2378

405

100

-45

EZ-22-25

No.9 Vein

531039

5653888

2422

181

254

-63

EZ-22-26

No.9 Vein

531039

5653888

2422

201

244

-63

EZ-22-27

No.9 Vein

531038

5653891

2422

201

308

-63

EZ-22-28

No.9 Vein

531038

5653891

2422

234

318

-63

EZ-22-29

SW Vein

531136

5653860

2422

246

111

-48

EZ-22-30

SW Vein

531136

5653860

2422

83

111

-55

Table 2: Significant Interval Table

Hole ID

From (m)

To (m)

Interval (m)

True Thickness (m)

Gold Grade

MET Screen Grade

Vein

EZ-21-01

94.00

96.60

2.60

2.21

4.60

5.12

SW Vein

and

83.50

84.00

0.50

0.43

20.50

pending

SW Vein

EZ-21-02

102.40

109.00

6.60

5.61

8.40

pending

SW Vein

including

105.40

106.50

1.10

0.93

46.30

pending

SW Vein

EZ-21-03

88.60

95.00

6.40

5.44

7.22

pending

SW Vein

including

89.30

91.90

2.60

2.21

11.80

pending

SW Vein

and

90.00

91.30

1.30

1.11

19.80

pending

SW Vein

and

34.70

35.20

0.50

0.43

3.15

pending

SW Vein

EZ-21-04

122.00

126.00

4.00

3.40

31.20

34.40

SW Vein

including

123.00

124.50

1.50

1.28

52.10

68.30

SW Vein

including

124.00

124.50

0.50

0.43

72.00

87.30

SW Vein

EZ-21-05

134.00

135.00

1.00

0.85

1.38

Not Preformed

7 Vein

217.55

218.25

0.70

0.59

1.74

1.67

SW Vein

and

256.00

256.50

0.50

0.43

1.03

0.89

SW Vein

and

554.85

555.35

0.50

0.43

0.24

Not Preformed

West Vein

EZ-21-06

134.50

136.00

1.50

1.28

1.10

1.71

7 Vein

and

245.00

246.00

1.00

0.85

2.05

2.45

SW Vein

EZ-21-07

Hole lost

EZ-21-07B

40.10

41.10

1.00

0.85

4.88

Not Preformed

7 Vein

and

51.50

52.20

0.70

0.60

9.06

Not Preformed

7 Vein

and

160.00

165.75

5.75

4.89

0.53

0.70

SW Vein

EZ-21-08

196.25

202.40

6.15

5.23

0.65

0.66

SW Vein

and

226.60

227.10

0.50

0.43

1.54

1.85

SW Vein

EZ-21-09

58.60

59.10

0.50

0.43

0.31

Not Preformed

Blue Vein

and

270.90

272.90

2.00

1.70

2.56

Not Preformed

SW Vein

and

355.88

357.00

1.12

0.95

0.85

Not Preformed

SW Vein

EZ-21-10

223.00

223.50

0.50

0.43

4.04

Not Preformed

7 Vein

and

347.70

349.20

1.50

1.28

0.22

0.21

SW Vein

EZ-21-11

326.90

327.40

0.50

0.43

0.55

0.44

SW Vein

EZ-21-12

117.80

118.80

1.00

0.85

47.6

33.7

Blue Vein

and

130.70

131.20

0.50

0.43

26.4

Not Preformed

Blue Vein

and

163.90

164.40

0.50

0.43

5.50

8.41

Blue Vein

and

344.90

347.00

2.10

1.79

0.78

1.22

SW Vein

EZ-21-13

230.70

232.60

1.90

1.62

0.76

0.71

SW Vein

EZ-21-14

224.00

224.90

0.90

0.77

1.63

1.15

SW Vein

Hole ID

From (m)

To (m)

Interval (m)

True Thickness (m)

Gold Grade

MET Screen Grade

Vein

EZ-21-15

318.40

320.80

2.40

2.04

0.31

Not Preformed

SW Vein

including

320.30

320.80

0.50

0.43

1.14

Not Preformed

SW Vein

EZ-21-16

305.00

306.90

1.90

1.61

0.55

Not Preformed

SW Vein

EZ-21-17

171.00

171.50

0.50

0.43

0.14

0.57

SW Vein

and

204.00

204.60

0.60

0.51

0.53

Not Preformed

SW Vein

and

254.60

256.85

2.25

1.91

1.40

1.58

7 Vein

and

350.13

350.75

0.62

0.53

1.01

Not Preformed

SW Vein

and

379.47

382.00

2.53

2.15

0.63

0.64

SW Vein

EZ-21-18

299.50

299.90

0.40

0.34

1.53

Not Preformed

SW Vein

EZ-21-19

127.50

128.00

0.50

0.43

4.52

Not Preformed

Blue Vein

and

129.00

130.50

1.50

1.28

4.25

Not Preformed

Blue Vein

and

167.80

168.70

0.90

0.76

4.50

6.14

Blue Vein

and

351.80

354.90

3.10

2.63

0.34

Not Preformed

SW Vein

EZ-21-20

NSI**

EZ-21-21

184.00

186.00

2.00

1.70

1.03

Not Preformed

unknown

and

263.45

264.30

0.85

0.72

1.34

Not Preformed

unknown

EZ-21-22

175.55

176.70

1.15

0.98

1.60

2.50

SW Vein

EZ-21-23

145.00

149.10

4.10

3.48

1.11

1.83

SW Vein

including

147.50

148.20

0.70

0.59

1.08

4.98

SW Vein

EZ-21-24

139.80

141.00

1.20

1.02

0.58

0.58

Blue Vein

and

181.70

182.65

0.95

0.81

0.85

0.84

Blue Vein

EZ-21-25

111.00

113.70

2.70

2.30

13.4

Not Preformed

Blue Vein

including

111.50

112.00

0.50

0.43

71.3

Not Preformed

Blue Vein

EZ-21-26

121.45

122.70

1.25

1.06

9.13

Not Preformed

Blue Vein

including

121.45

121.70

0.25

0.21

45.1

Not Preformed

Blue Vein

and

159.06

160.25

1.19

1.01

1.35

1.45

Blue Vein

EZ-21-27

152.20

153.60

1.40

1.19

12.1

14.31

Blue Vein

including

152.20

153.20

1.00

0.85

16.3

19.19

Blue Vein

and

157.00

157.40

0.40

0.34

1.27

1.28

Blue Vein

EZ-21-28

245.60

246.85

1.25

1.06

0.67

Not Preformed

No.9 Vein

Hole ID

From (m)

To (m)

Interval (m)

True Thickness (m)

Gold Grade

MET Screen Grade

Vein

EZ-22-01

123.90

124.70

0.80

0.68

2.07

2.07

Blue Vein

and

125.90

126.00

0.10

0.08

3.82

3.82

Blue Vein

and

161.42

161.82

0.40

0.34

2.25

2.25

Blue Vein

EZ-22-02

147.65

147.83

0.18

0.15

6.88

6.88

Blue Vein

and

185.25

185.85

0.60

0.51

1.89

1.89

Blue Vein

EZ-22-03

96.91

97.33

0.42

0.36

2.05

523.00

Blue Vein

and

124.02

124.47

0.45

0.38

32.66

Not Preformed

Blue Vein

including

124.02

124.13

0.11

0.09

130.00

133.00

Blue Vein

and

164.41

166.14

1.73

1.47

7.41

Not Preformed

Blue Vein

including

165.41

166.14

0.73

0.62

17.40

Not Preformed

Blue Vein

EZ-22-04

353.8

354

0.2

0.17

1.25

Not Preformed

Blue Vein

EZ-22-05

44.5

45.2

0.7

0.595

11.20

Not Preformed

Blue Vein

and

56.8

57

0.2

0.17

1.38

Not Preformed

Blue Vein

and

84.65

85.55

0.9

0.765

1.33

Not Preformed

Blue Vein

and

98

99

1

0.85

2.62

Not Preformed

Blue Vein

EZ-22-06

40.2

40.9

0.7

0.595

1.91

Not Preformed

Blue Vein

and

47.8

48.15

0.35

0.2975

1.17

Not Preformed

Blue Vein

and

153.35

155

1.65

1.4025

1.71

Not Preformed

Blue Vein

Including

154.15

155

0.85

0.7225

2.79

Not Preformed

Blue Vein

EZ-22-07

164.6

164.92

0.32

0.272

1.45

Not Preformed

Blue Vein

and

165.66

165.79

0.13

0.1105

7.30

Not Preformed

Blue Vein

and

170.17

170.4

0.23

0.1955

48.60

Not Preformed

Blue Vein

EZ-22-08

120.6

121

0.4

0.34

0.494

Not Preformed

Blue Vein

EZ-22-09

105.12

106.17

1.05

0.89

322.54

310.72

Blue Vein

including

105.12

105.32

0.20

0.17

1,654

1,572

Blue Vein

105.32

106.17

0.85

0.72

9.25

13.95

Blue Vein

and

161.13

162.00

0.87

0.74

2.68

Not Preformed

Blue Vein

and

356.19

358.38

2.19

1.86

0.41

Not Preformed

SW Vein

Including

356.19

356.70

0.51

0.43

1.05

Not Preformed

SW Vein

EZ-22-10

193.1

194.75

1.65

1.40

0.61

Not Preformed

Blue Vein

Including

193.98

194.23

0.25

0.21

0.997

Not Preformed

Blue Vein

EZ-22-11

102.45

193.42

91.37

77.67

0.31

Not Preformed

Blue Vein

including

102.45

104.75

2.30

1.96

11.75

Not Preformed

Blue Vein

including

103.15

103.45

0.30

0.26

85.20

Not Preformed

Blue Vein

Hole ID

From (m)

To (m)

Interval (m)

True Thickness (m)

Gold Grade

MET Screen Grade

Vein

EZ-22-12

137.65

139.33

1.68

1.43

1.26

Not Preformed

Blue Vein

including

138.80

139.33

0.53

0.45

2.08

Not Preformed

Blue Vein

EZ-22-13

108.52

108.77

0.25

0.21

1.62

Not Preformed

Blue Vein

and

111.00

111.27

0.27

0.23

1.03

Not Preformed

Blue Vein

and

112.34

112.45

0.11

0.09

15.30

Not Preformed

Blue Vein

and

196.42

196.60

0.18

0.15

1.49

Not Preformed

Blue Vein

and

215.83

216.00

0.17

0.14

1.95

Not Preformed

Blue Vein

*true thickness is estimated using a multiplier of 0.85. The Company considers anything over 0.2 g/t gold as significant. **no significant intervals

Appendix 2: The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of Exploration Results for the Elizabeth - Blackdome Gold Project

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria

JORC Code explanation

Commentary

Sampling techniques

  • Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gammasondes, or handheld XRF instruments, etc).These examples should not be taken as limiting the broad meaning of sampling.
  • Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
  • Aspects of the determination of mineralisation that are Material to the Public Report. In cases where ‘industry standard' work has been done this would be relatively simple(eg ‘reverse circulation drilling was used to obtain1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types(eg submarine nodules) may warrant disclosure of detailed information.
  • HQ (63.5 mm) sized diamond core using standard equipment.
  • Mineralised and potentially mineralised zones, comprising veins, breccias, and alteration zones were sampled.
  • Samples were half core.
  • Typical core samples are 1m in length.
  • Core samples sent to the lab will be crushed and pulverized to 85% passing75 microns. A 50g pulp will be fire assayed for gold and multi-element ICP. Samples over 10 g/t gold will be reanalysed by fire assay with gravimetric finish

Drilling techniques

  • Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).
  • Diamond Drilling from surface (HQ size)

Drill sample recovery

  • Method of recording and assessing core and chip sample recoveries and results assessed.
  • Measures taken to maximise sample recovery and ensure representative nature of the samples.
  • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.
  • Detailed calculation of recovery was recorded, with most holes achieving over 95%
  • No relationship has yet been noted between recovery and grade and no sample bias was noted to have occurred.

Criteria

JORC Code explanation

Commentary

Logging

  • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
  • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
  • The total length and percentage of the relevant inter sections logged.
  • Detailed geological and geotechnical logging was completed for each hole.
  • All core has been photographed.
  • Complete holes were logged.

Sub- sampling techniques and sample preparation

  • If core, whether cut or sawn and whether quarter, half or all core taken.
  • If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
  • For all sample types, the nature, quality and appropriateness of the sample preparation technique.
  • Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.
  • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.
  • Whether sample sizes are appropriate to the grainsize of the material being sampled.
  • Half core was sampled, using a core saw.
  • Duplicate samples of new and historical core are Quarter core or half core where not previously sampled
  • Sample sizes are considered appropriate for the grain size of the material being sampled.
  • It is expected that bulk sampling will be utilised as the project advances, to more accurately determine grade.

Quality of assay data and laboratory tests

  • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
  • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and the irderivation, etc.
  • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
  • Core samples that have been sent to the lab for analysis include control samples(standards, blanks and prep duplicates) inserted at a minimum rate of 1:5 samples.
  • In addition to the minimum rate of inserted control samples, a standard or a blank is inserted following a zone of mineralization or visible gold
  • Further duplicate samples were analysed to assess variability

Verification of sampling and assaying

  • The verification of significant intersections by either independent or alternative company personnel.
  • The use of twinned holes.
  • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
  • Discuss any adjustment to assay data.
  • Re-assaying of selected intervals of historic core have been sent for analysis.

Criteria

JORC Code explanation

Commentary

Location of datapoints

  • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
  • Specification of the grid system used.
  • Quality and adequacy of topographic control.
  • All sampling points were surveyed using a hand held GPS.
  • UTM grid NAD83Zone 10.
  • A more accurate survey pickup will be completed at the end of the program, to ensure data is appropriate for geological modelling and Resource Estimation.
  • Down hole surveys have been completed on all holes.

Data spacing and distribution

  • Data spacing for reporting of Exploration Results.
  • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
  • Whether sample compositing has been applied.
  • Most drilling is targeting verification and extension of known mineralisation.
  • It is expected that the data will be utilised in a preparation of a Mineral Resource statement.
  • Additional drilling is exploration beneath geochemical anomalies, and would require further delineation drilling to be incorporated in a Mineral Resource.

Orientation of data in relation to geological structure

  • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
  • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.
  • In general, the aim was to drill perpendicular to the mineralised structures, to gain an estimate of the true thickness of the mineralised structures.
  • At several locations, a series (fan) of holes was drilled to help confirm the orientation of the mineralised structures and to keep land disturbance to a minimum.

Sample s Security

  • The measures taken to ensure sample security.
  • Samples from Elizabeth were delivered to the laboratory by a commercial transport service.

Audits or Reviews

  • The results of any audits or reviews of sampling techniques and data.
  • An independent geological consultant has recently visited the site as part of preparing an updated NI43-101Technical Report for the Project.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

  • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
  • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.
  • The Black
  • dome-Elizabeth Project is comprised of 73 contiguous mineral claims underlain by 14 Crown granted mineral claims and two mining leases.
  • The Property is located in the Clinton and Lillooet Mining Divisions approximately 230 km NNE of Vancouver
  • Tempus has exercised the option to acquire the Elizabeth Gold Project and has completed an addendum to the original Elizabeth Option Agreement (refer to ASX announcement 15 December 2020)
  • A net smelter royalty of 3% NSR (1% purchasable) applies to several claims on the Elizabeth Property.
  • No royalties apply to the Blackdome Property or Elizabeth Regional Properties.
  • There are currently no known impediments to developing a project in this area, and all tenure is in good standing.

Exploration done by other parties

  • Acknowledgment and appraisal of exploration by other parties.
  • In the 1940s,placer gold was discovered in Fairless Creek west of Blackdome Summit. Prospecting by Lawrence Frenier shortly afterward led to the discovery of gold-bearing quartz veins on the southwest slope of the mountain that resulted in the staking of mining claims in 1947. Empire Valley Gold Mines Ltd and Silver Standard Resources drove two adits and completed basic surface work during the 1950s.
  • The Blackdome area was not worked again until 1977 when Barrier Reef Resources Ltd. re-staked the area and performed surface work in addition to underground development. The Blackdome Mining Corp. was formed in 1978 and performed extensive surface and underground work with various joint venture partners that resulted in a positive feasibility study. A 200 ton/day mill, camp facilities and tailings pond were constructed and mining operations officially commenced in 1986. The mine ceased operations in 1991, having produced 225,000 oz of Au and 547,000oz of Ag from 338,000tons of ore (Godard et al., 2010)
  • After a period of inactivity, Claims taker Resources Ltd. took over the project, reopening the mine in late 1998.

Criteria

JORC Code explanation

Commentary

Mining operations lasted six months and ended in May of 1999. During this period, 6,547 oz of Au and 17,300 oz of Ag were produced from 21,268 tons of ore. Further exploration programs were continued by Claims taker over the following years and a Japanese joint venture partner was brought onboard that prompted a name change to J-Pacific Gold Inc. This partnership was terminated by 2010, resulting in another name change to Sona Resources Corp.

  • Gold-bearing quartz veins were discovered near Blue Creek in 1934, and in 1940-1941 the Elizabeth No. 1-4 claims were staked.
  • Bralorne Mines Ltd. optioned the property in 1941 and during the period 1948-1949, explored the presently- named Main and West Veins by about 700 metres of cross-cutting and drifting, as well as about 110 metres of raises.
  • After acquiring the Elizabeth Gold Project in 2002, J- Pacific (now Sona) has conducted a series of exploration programs that included diamond drilling 66 holes totalling 8962.8 metres (up until 2009) Other exploration work by Sona at the Elizabeth Gold Project has included two soil grid, stream sediment sampling, geological mapping and sampling, underground rehabilitation, structural mapping and airborne photography and topographic base map generation.

Geology

  • Deposit type, geological setting and style of mineralisation.
  • The Blackdome property is situated in a region underlain by rocks of Triassic to Tertiary age. Sedimentary and igneous rocks of the Triassic Pavilion Group occurring along the Fraser River represent the oldest rocks in the region. A large, Triassic age, ultramafic complex (Shulaps Complex) was emplaced along the Yalakom fault; a regional scale structure located some 30 kilometres south of the property. Sediments and volcanics of the Cretaceous Jackass Mountain Group and Spences Bridge/Kingsvale Formations overlie the Triassic assemblages. Some of these rocks occur several kilometres south of Blackdome.
  • Overlying the Cretaceous rocks are volcanics and minor sediments of Eocene age. These rocks underlie much of Blackdome and are correlated with the Kamloops Group seen in the Ashcroft and Nicola regions.

Criteria

JORC Code explanation

Commentary

Geochemical studies (Vivian,1988) have shown these rocks to be derived from a "calc-alkaline" magma in a volcanic arc type tectonic setting. Eocene age granitic intrusions at Poison Mountain some 22 kilometres southwest of Blackdome are host to a gold bearing porphyry copper/molybdenum deposit. It is speculated that this or related intrusions could reflect the source magmas of the volcanic rocks seen at Blackdome. There is some documented evidence of young granitic rocks several kilometres south of the mine near Lone Cabin Creek.

The youngest rocks present are Oligocene to Miocene basalts of the Chilcotin Group. These are exposed on the uppermost slopes of Blackdome Mountain and Red Mountain to the south.

  • Transecting the property in a NE-SW strike direction are a series of faults that range from vertical to moderately westerly dipping. These faults are the principal host structures for Au- Ag mineralisation. The faults anastomose, and form sygmoidal loops.
  • The area in which the Elizabeth Gold Project is situated is underlain by Late Paleozoic to Mesozoic rock assemblages that are juxtaposed across a complex system of faults mainly of Cretaceous and Tertiary age. These Paleozoic to Mesozoic-age rocks are intruded by Cretaceous and Tertiary-age stocks and dykes of mainly felsicto intermediate composition, and are locally overlain by Paleogene volcanic and sedimentary rocks. The Elizabeth Gold Project is partly underlain by ultramafic rocks of the Shulaps Ultramafic Complex, which include harzburgite, serpentinite and their alteration product list wanite.
  • The gold mineralisation found on the Elizabeth Gold Project present characteristics typical of epigenetic mesothermal gold deposits. The auriferous quartz vein mineralisation is analogous to that found in the Bralorne- Pioneer deposits. Gold mineralisation is hosted by a series of northeast trending, steeply northwest dipping veins that crosscut the Blue Creek porphyry intrusion. The Main and West vein systems display mesothermal textures, including ribboned-laminated veins and comprehensive wall rock breccias. Vein formation and gold mineralisation were associated with extensional-brittle faulting believed to be contemporaneous with mid- Eocene extensional faulting along the Marshall Creek, Mission Ridge and Quartz Mountain faults.

Criteria

JORC Code explanation

Commentary

Drill hole Information

  • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
    • easting and northing of the drill hole collar
    • elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar
    • dip and azimuth of the hole
    • down hole length and interception depth
    • hole length.
  • If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
  • Refer to Appendix 1 for drillhole collar information

Data aggregation methods

  • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades)and cut-off grades are usually Material and should be stated.
  • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
  • The assumptions used for any reporting of metal equivalent values should be clearly stated.
  • Intervals reported using several samples are calculated using a weighted average.
  • Calculated intervals using a weighted average did not use a top cut on high-grade samples. High-grade samples are reported as ‘including'
  • Calculated weighted average intervals are continuous intervals of a mineralized zone and do not include unsampled intervals or unmineralized intervals.

Relationship between mineralisation widths and intercept lengths

  • These relationships are particularly important in the reporting of Exploration Results.
  • If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
  • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect(eg ‘down hole length, true width not known').
  • In general, drilling is designed to intersect the mineralized zone at a normal angle, but this is not always possible.
  • For the reported intervals, true widths are reported where mineralized core was intact and possible to measure the orientation. Otherwise the true width is left blank

Diagrams

  • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.
  • Refer to maps within announcement for drillhole locations.

Criteria

JORC Code explanation

Commentary

Balanced

reporting

  • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
  • Where broader low-grade intervals are reported the high-grade intercepts are reported as ‘including' within the reported interval

Other substantive exploration data

  • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.
  • Tempus recently completed an airborne magnetic and radiometric survey over the Elizabeth Gold Project (refer to ASX announcement 02 August 2021) by completing 97 lines for a total of 735 line-kilometres. Flight lines are oriented east-west with north-south tie lines and spaced 200 metres across the entire 115km2 Elizabeth property. Line spacing of 100 metres was flown over the Elizabeth Main and Elizabeth East Zones.
  • The airborne magnetic survey data was reviewed and interpreted by Insight Geophysics Inc. using 3D magnetization vector inversion (MVI) modelling.
  • The geophysical surveys identified the Blue Creek Porphyry, which is the known host of the high-grade Elizabeth gold-quartz veins, as a relative magnetic low anomaly within the Shulaps Ultramafic Complex. From this correlation of geology and geophysics it was determined that the Blue Creek Porphyry, originally explored / mapped to approximately 1.1km2 in size, is likely much larger. The airborne magnetic survey and MVI 3D modelling interpret the Blue Creek Porphyry to be at least four-times the size at approximately 4.5km2.
  • This interpretation of the Blue Creek Porphyry is also extensive at depth extending to at least 2km deep

Further work

  • The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling).
  • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
  • Tempus plans to update historical NI43-101 foreign resource estimates to current NI43-101 and JORC 2012 standards
  • Tempus is also seeking to expand the scale of the mineralisation at the project through further exploration.

SOURCE: Tempus Resources Ltd



View source version on accesswire.com:
https://www.accesswire.com/717335/Tempus-Drills-More-Visible-Gold-at-No9-Vein--Elizabeth-Project

Stock Quote API & Stock News API supplied by www.cloudquote.io
Quotes delayed at least 20 minutes.
By accessing this page, you agree to the following
Privacy Policy and Terms and Conditions.